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Symmetry breaking and phase coexistence in a driven diffusive two-channel system
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We consider classical hard-core particles moving on two parallel chains in the same direction. An interaction
between the channels is included via the hopping rates. For a ring, the stationary state has a product form. For
the case of coupling to two reservoirs, it is investigated analytically and numerically. In addition to the known
one-channel phases, two new regions are found, in particular one, where the total density is fixed, but the filling
of the individual chains changes back and forth, with a preference for strongly different densities. The corre-
sponding probability distribution is determined and shown to have a universal form. The phase diagram and
general aspects of the problem are discussed.
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I. INTRODUCTION

Driven many-particle systems have been the topic of
merous studies in recent years@1#. The simplest example is
one-dimensional lattice gas where hard-core particles m
stochastically in one direction. This model, also known
the asymmetric exclusion process, can be treated exactly
therefore, has become a reference system in this field@2–4#.
The characteristic feature of such driven systems is a n
zero current in the stationary state. For the case of o
boundaries, this current transports the ‘‘information’’ fro
the boundaries into the bulk, and nonequilibrium phase tr
sitions can arise@5,6#. These do not have analog in equilib
rium systems where the boundaries normally do not pla
significant rôle. It was shown in@7# that the phase transition
for a generic-driven system with one type of particles
governed entirely by an extremal principle for the mac
scopic currentj (r), wherer denotes the average density
the particles. This principle states that the stationary b
current assumes its absolute minimum within the interval
by the boundary densities, ifr2~left! ,r1~right! and the
flux is towards the right. Ifr2.r1 it takes its absolute
maximum. In either case, the current and the density flu
ate only slightly around their stationary values and the fl
tuations vanish as the system size goes to infinity.

In the present paper, we study a system with two para
channels and show that these two properties do not hol
general. Our example is a simple extension of the o
channel model and contains one additional parameter
measures the coupling between the channels. There i
exchange of particles, but the hopping rates in one ch
depend on the local configuration in the other one. They
chosen in such a way that, for a ring, the stationary state
a simple product form, and thus, the current can be obta
explicitly. With reservoirs at the ends, the system was stud
by a combination of numerical and analytical methods. I
r2-r1 phase diagram, it shows a number of regions w
equal densities in both chains and various values for the
rent. In addition, however, there are two other regions w
unexpected new features. They develop out of the first-o
transition line of the single-chain problem as the interact
between the channels is turned on. In both of them, the o
all densitiesr1 and r2 in the two chains fluctuate strongl
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and only a probability distributionw(r1 ,r2) can be given.
Together with that, symmetry-breaking phenomena appe

In one region, one finds spatial coexistence between
tions of equal and of unequal~but fixed! densities in the two
chains, with the size of these sections varying in time. Thi
similar to the situation on the transition line for one cha
where sections of high and low density, separated by a
main wall, coexist. It is related to the fact that the curre
which must be constant throughout the system~and thus
plays the roˆle of a chemical potential!, can be the same fo
different densities. This will be called themixed-phase re-
gion in the following.

In the other region, which appears if the coupling excee
a critical value and then grows at the expense of the first o
only the unsymmetric configurations exist. The total syst
is then practically half filled,r11r251, but the individual
densities change in time. The same holds for the current.
most probable configurations are those where one chann
relatively empty and the other relatively full. Between the
the system diffuses back and forth, and hence, we will
the termseesaw regionin the following. The time in which
the channels interchange roles increases only as a pow
the system size, in contrast to the result for a model with t
kinds of particles on one chain@6,8# or simplified versions of
it @9,10#. The situation can be compared to that at an eq
librium first-order transition with a vanishing or size
independent free-energy barrier between the phases. In
sense, the symmetry breaking could be called ‘‘weak.’’ T
origin of this behavior is related to the existence of fast a
slow processes in the system, as will be discussed in de

The paper is organized as follows. In Sec. II, we defi
the model and describe the solution on a ring. In Sec. III,
treat it with boundary reservoirs and present numerical
sults from Monte Carlo and mean-field calculations. T
case of strong interactions, where one can simplify the pr
lem and obtain analytical results for the seesaw region, is
topic of Sec. IV. After that, we turn, in Sec. V, to gener
interactions and establish the completer22r1 phase dia-
gram. Section VI contains the conclusion and some disc
sion of open problems. Some details concerning the bou
ary rates and the mean-field equations can be found
Appendixes A and B.
©2001 The American Physical Society26-1
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II. MODEL

Our model consists of two parallel chains, on each
which particles can hop towards the right if the next site
empty. The hopping rate in one chain depends on the c
figuration of the neighboring sites in the other and one
the four processes shown in Fig. 1. The stationary state h
simple form~given below! if the rates satisfy the condition
a1b52g. In the following, we choosea5b5g51, so
that the remaining rate

e[exp~2n! ~1!

is the only parameter. It refers to those processes where
site besides the jumping particle is empty, but the next on
the forward direction is occupied. We will always assumee
,1. This can be viewed as the result of short-range inte
tions that increase the barrier similar as in@11#. In a traffic-
model context,e would describe a hesitation to move besid
another car.

The state of the system can be described either by o
pation numbersnk ,mk , or by spin variablessk ,tk for the
two chains. The first take the values 1~0!, the latter the values
11~21! if site k is occupied~empty!. For a ring withN sites,
the stationary probability P(s,t)
5P(s1 ,s2 , . . . ,sN ,t1 ,t2 , . . . ,tN) then has the Boltz-
mann form

FIG. 1. The four elementary hopping processes, shown here
the first chain, and their rates. In the study, the first three rates
set equal to one.
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P~s,t!5C)
k51

N

exp~2 1
4 nsktk!, ~2!

which means that different sitesk are uncorrelated. This ca
be proved by a straightforward consideration of the gain a
loss processes. For the ring geometry, the stationary dens
are constant and the quantities of main interest are the
rents j 1 , j 2 in the two chains. These can be calculated eit
by working in a grand canonical ensemble or via the me
field equations of Appendix B, which are exact here due
the form of Eq.~2!. For example, the mean-field expressi
for j 1 is, from Eq.~B1!, with pk5nkmk

j 15nk~12nk11!1~e21!~nk2pk!~mk112pk11!, ~3!

where all quantities are expectation values. In the station
state, they are independent ofk, nk5r1 ,mk5r2 and one
only has to determinep. The expression for the current fo
arbitrary densitiesr1 ,r2 is complicated and is omitted here
In particular casesr15r2 or r1512r2, the currents in the
two chains are the same and given by

j 5r~12r!@16$12A11F~6n,r!%2/F~6n,r!#; ~4!

F~n,r!54~e2n21!r~12r!, ~5!

where the upper~lower! sign holds forr15r25r and r1
512r25r, respectively. The resulting curves are shown
Fig. 2 for various values of the interaction parametern. One
can see that for largern a minimum atr51/2 exists in the
case of equal densities. The value where this first happen
ncrit5 ln 4'1.39. The reason is that for half filling and larg
n, adjacent sites are mainly occupied by particle-hole pa
and then only hopping with the small ratee is possible. Such
a double-peak structure of the current leads to a much ric
phase diagram in the one-chain problem with reservoirs@7#

or
re
FIG. 2. Currentj vs densityr for a ring according to~3,4! for four values of the interaction,n51.2,2,4,8~a!–~d!. Upper and lower curves
correspond tor5r15r2 andr5r1512r2, respectively.
6-2
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FIG. 3. Time evolution of the average densities in the two chains for three typical cases, as obtained from simulations for a sys
n52 andN51000 sites. Boundary densitiesr2 ,r1 : ~a! 0.15, 0.5;~b! 0.15, 0.8;~c! 0.42, 0.6.
ea
s
t

d
e
th
be
ti
th

or
rd
a

nd

i
ry
e

on
s

ta
he
e

l. It
cted

en-
m
n-

he

si-
ins,

s
h a
e a

ble

its
o
ays

p-

del.
hile
s.

t,
t its
t,
f

With reservoirs, particles enter the system at siten51
and leave from siteN. If one adds reservoir sitesn50 and
n5N11 to the chains, the bulk processes of Fig. 1 app
also at the boundaries. The rates can then be chosen in
a way that the dynamics is the same as in the interior, bu
prescribed densitiesr2 and r1 @12,7#. These are thus the
only boundary parameters that enter. The procedure is
scribed in more detail in Appendix A. In the following w
will normally choose equal boundary densities for bo
chains, which makes the problem completely symmetric
tween them. Since the transport can be viewed as the mo
of vacancies towards the left, it is also symmetric under
exchanger2↔12r1 ,ra↔12ra .

III. NUMERICS

We have performed Monte Carlo~MC! simulations of our
system for different values ofr2 ,r1 , andn, looking first at
global quantities, namely the overall densitiesr1(t) and
r2(t) in the two chains. The motivation for this was that, f
a single chain, the average density of particles is an o
parameter characterizing the different phases. This me
that r(t) fluctuates only slightly around its mean value a
the fluctuations vanish as the system size grows.

Typical results of such MC calculations are presented
Fig. 3 for n52 and three different values of the bounda
densities. While in Fig. 3~a! the behavior is as for a singl
chain, the other two figures show a ‘‘random walk’’ ofr1 and
r2 within a large range of densities. These large fluctuati
are intrinsic, they do not change qualitatively with the sy
tem size. In Fig. 3~c! the situation is still relatively simple
since the sum of the densities stays approximately cons
In Fig. 3~b!, however, the behavior is rather irregular and t
global densities do not give a sufficient description. Rath
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one has to look at the state of the system in more detai
then turns out that the seemingly chaotic pattern is conne
with the spatial coexistence of several phases.

This can already be seen in a mean-field~MF! analysis of
the system. The corresponding equations are given in App
dix B. We integrated them over time, starting from rando
initial conditions and stopping when the current had co
verged to 1026 in relative units. In the region of smallr2

and larger1 , the mean-field density profiles then had t
typical shapes seen in Fig. 4.

Let us first discuss Fig.4~a!, which corresponds tor2

,12r1 . Here, one has two regions where the local den
ties are constant. On the left they are the same in both cha
^nk&,^mk&5r2 , while on the right they are different. Thi
leads to the bubblelike structure in the figure. That suc
coexistence is possible, follows already from Fig. 2, sinc
given value of the current~for the ring! can be realized in
different ways. Correspondingly, the densities in the bub
region are given bŷ nk&5 r̂,^mk&512 r̂ where j ( r̂,12 r̂)
5 j (r2 ,r2). The left end of the bubble can be anywhere,
location depends on the initial conditions. Similarly, the tw
channels can exchange roles. However, the bubble is alw
‘‘glued’’ to the right boundary. Forr2.12r1 , one has a
similar picture but the region with equal densities now a
pears on the right and the values are^nk&,^mk&5r1 . This is
a consequence of the particle-hole symmetry of the mo
The bubble in this case is attached to the left boundary, w
the location of its right end depends on the initial condition
Finally, on the liner2512r1 , see Fig. 4~b!, the bubble
coexists withtwo regions, one to the left and one to the righ
where the density in both chains is the same. On the lef
value isr2 , on the right it isr1 . These regions can coexis
becausej (r,r)5 j (12r,12r). In this case, the locations o
6-3
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FIG. 4. Density profiles in the mean-field approximation for a system withn52 andN5200 sites. Boundary densitiesr2 ,r1 : ~a! 0.15,

0.82;~b! 0.15, 0.85. The horizontal lines indicate the densitiesr̂,12 r̂ predicted by equating the currentsj ( r̂,12 r̂)5 j (r2 ,r2), see Sec. III.
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both ends of the bubble depend on the initial conditions.
In order to verify the correctness of this MF picture, w

performed specific Monte Carlo simulations. In the spirit
@18,16#, we introduced two phantom particlesA and B de-
signed to track down the left and right end of a bubb
respectively. Denoting the position of particleA by a, the
rules are

a→a11, if na1150, ma1150, ~6!

a→a21, if ~12na21!~12ma21!50. ~7!

This means thatA moves preferentially to the right in
low-density region and preferentially to the left in a hig
density region, including the bubble region. In contrast to
second-class particles in Ref.@16#, A does not use the sites o
the chains and should rather be viewed as moving bes
them. Its dynamics does not interfere with that of the ch
particles. Analogously, the dynamics of particleB with coor-
dinateb is

b→b21, if nb2151, mb2151, ~8!

b→b11, if nb21mb2150, ~9!

and it therefore tracks the right end of a bubble.
One then runs the MC simulations, adds particlesA andB

at some point and monitors their positions. Forr2,1
2r1 , it turns out thatA performs a random walk, whileB
basically sticks to the right boundary,b'N. It is then inter-
esting to look at those configurations, whereA is at a certain
specified site. Thereby one singles out the states with a
ticular size of the bubble region~if there is one!. The average
density profile in this case is shown in Fig. 5 forr250.15,
r150.77. Quite remarkably, it has the same shape as fo
in the mean-field calculations@17#. This confirms that, in-
deed, there is a very unusual dynamical coexistence of v
ous states. The MC calculations also confirm that the siz
the bubble region can vary and that the two chains can in
change roles. While this is related to the initial conditions
the MF treatment, it happens dynamically here.

For the case of Fig. 3~c! the situation is different. As
mentioned, the system is always half filled, i.e.,r1(t)
1r2(t)51 during the evolution. For given overall densitie
r1 ,r2, one finds an average profile with one bubble that fi
essentially the whole system. Thus, there is no spatial co
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istence of different regions along the chains. However,
densities individually fluctuate strongly in an interval

rmin<r1,2<rmax, ~10!

where roughlyrmin5max(r2,12r1), rmax512rmin . A
small asymmetryh in the boundary densities~a field in mag-
netic language! suppresses these fluctuations. If one choo

r2,15r22h, r2,25r2 , r1,15r1 , r1,25r11h,
~11!

which makes the chains inequivalent without destroying
particle-hole symmetry, the system locks in atr1
5rmin , r25rmax or vice versa, depending on the sign
h. Moreover, if one computes formally a ‘‘free-energy de
sity’’ f (M )52 ln@w(M)#/N at small field, wherew(M ) is the
stationary probability to haveM particles in one channel, i
has exactly the same form as found for a single chain in
vicinity of the line of first-order transitions, see Fig. 18
@8#. Therefore, the whole region where this occurs~and
which we will determine in more detail below! can be
viewed as one of first-order transitions.

FIG. 5. Average density profiles as seen from a second-c
particle positioned at site 170, provided the density in the first ch
is higher, for a system withn52, r250.15, r150.77, andN
5400 sites. The average is taken over 6*107 Monte Carlo steps
after 3*105 steps of equilibration. The horizontal lines indicate t

densities r̂,12 r̂ predicted by equating the currentsj ( r̂,12 r̂)
5 j (r2 ,r2), see Sec. III.
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IV. STRONG-INTERACTION LIMIT

The behavior described at the end of the previous sec
is found in the whole domain of reservoir densities

r2,1/2; r1.1/2 ~12!

if the interaction between the channels is strong, i.e., in
@1 (e!1). In this limit, the problem can be discussed an
lytically, as we now show.

The basic observation is that in this casethree of the
boundary processes are slow~with rate of ordere) and only
one ~where on the left both sites are empty or on the rig
both sites are full! is fast ~rate of order 1!. This comes from
the construction of the boundary rates mentioned above
is discussed in more detail in Appendix A. As a consequen
there exist particular configurations, which can be left o
with ratee, and that we will call metastable. These are su
that the system is half filled, withM particles in the first and
N2M in the second channel, arranged in such a way
adjacent sites are always in a particle-hole state. Two
amples are shown in Fig. 6. Transitions between such st
have the character of avalanches. After a slow process, e
at the boundary or in the interior, a sequence ofN fast pro-
cesses follows after which a new metastable configuratio
reached. If the start is in the bulk, four different final co
figurations withM 85M , M61 can be reached according

M→H M with probability 1/2

M11 with probability 1/4

M21 with probability 1/4

. ~13!

A process in the bulk starts at a wall, where the orientation
the particle-hole pairs changes. For example, the first c
figuration in Fig. 6 has two such walls. For a givenM, the
average number of walls can be shown to be;M (1
2M /N). Therefore, the average rate for bulk processes fr
level M is given by

aM;M ~12M /N!e/4. ~14!

Similar considerations apply to the processes starting at
boundaries. Here, two final configurationsM 85M and M 8
5M11 or M 85M21 can be reached with equal probab
ity. However, the rate does not involveM, and thus, these
processes are unimportant compared to the bulk proce
except for very smallM or N2M . In the following, we will
neglect them.

The dynamics of the metastable states is thus equiva
to a random walk in the space of occupation number
<M<N with a position-dependent rate given by Eq.~14!.
This rate, which in terms of the densityr15r5M /N is pro-
portional tor(12r), is small at the ends of the interval an
large in the middle. Therefore, the system will spend mos

FIG. 6. Two examples of metastable states, see text.
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its time nearM50 andM5N. This can be made more pre
cise by writing down the master equation for the probabil
wM to find the valueM

]wM

]t
5aM11wM111aM21wM2122aMwM . ~15!

In a continuum limit, this becomes

]w~r!

]t
5

]2

]r2
@D~r!w~r!#, ~16!

where D(r)5aM /N2 is the diffusion constant. This equa
tion can be related to the associated Legendre differen
equation. However, for the stationary state it is sufficient
note that the probability current is given by

I ~r!52
]

]r
@D~r!w~r!#. ~17!

Since this has to be zero, the stationary distribution follo
as

w~r!5
A

r~12r!
; 0,r,1. ~18!

This simple universal function, which is independent of t
parameters of the system, is also seen in simulations as i
trated in Fig. 7~a!. Actually, the picture shows some devia
tions at the boundaries of the interval, but there the neglec
processes should be included. This would lead to finite ra
also atr50,1 and preventw(r) from diverging there. In
order to normalize it as it stands, one has to leave out a s
boundary region of widthd/N.

Although the system is mainly in configurations with th
density in one chain small and in the other large, it is n
locked into them. The average time in which the two cha
interchange roles can be calculated from the first pass
time formula given in@13#. In the continuum case it reads

T5E
d/N

12d/N

drw~r!E
d/N

1/2 dr8

D~r8!w~r8!
5N ln~N/d!/e.

~19!

Thus,T is smaller than for a homogeneous diffusion proce
where it varies asN2. This is due to the large hopping rate
proportional toN for intermediate values ofr. The law is
also found numerically, as seen from Fig. 7~b!. However, this
result and the considerations so far do not apply to arbitra
large system sizes.

If N becomes too large, the typical time 1/Ne after which
a new slow process starts, becomes smaller than the timt
5N needed to complete the first one. Therefore, the previ
considerations are limited to sizes such thatN2e&1. For
larger systems, it is not possible to separate the fast and
slow processes. Nevertheless, the system is still basic
half filled and each time a particle comes in and anot
particle exits, the numberM changes according to Eq.~13!.
6-5
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FIG. 7. ~a! Stationary probability distributionw(r) for small systems in the seesaw region. Analytical result~18! ~continuous curve! in
comparison with data from Monte Carlo simulations of systems withn58, r250.1,r150.9, andN520,30,50 sites~crosses, stars, and
boxes!. The systems have evolved for at least 107 Monte Carlo steps, the averages are taken over 40 histories.~b! The corresponding averag
passage times.
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Since these processes also determine the flux through
system, their effective rate can be related toj (r,12r). Thus,
instead of Eq.~14!, one has

aM5 j ~r,12r!/2, ~20!

where forj one can use the ring result~4!. This should give
the behavior in the thermodynamic limit. Following the sam
steps as before, one then obtains the distribution

w~r!5
A

j ~r,12r!
; r within the limits~10! ~21!

for the densityr. This is again independent of the bounda
valuesr6 , and the interaction enters only via the formu
for the current. The function is qualitatively similar to E
~18! but, according to the form ofj ~cf. Fig. 2!, has a flatter
shape. This behavior is clearly seen in simulations. Figur
shows numerical results for a system of 300 sites toge

FIG. 8. Stationary probability distributionw(r) for a large sys-
tem in the seesaw phase. Analytical result~21! together with simu-
lation data for a system ofN5300 sites from 1.53107 Monte Carlo
steps, averaging over 40 histories. The parameters aren54, r2

50.2 andr150.8. The result~18! is also shown for comparison
~dotted!.
02612
he

8
er

with the analytical prediction. Again, there are deviations
the boundary regions nearr50 andr51 due to Eq.~10! but
apart from that the agreement is very good. The curve~18!,
plotted for comparison, clearly does not fit the data. N
that the rate~20! does not contain the size any more. The
fore, the passage timeT is now proportional toN2. In con-
trast to the diffusion model treated in@9,10# there is no ex-
ponential increase with the size.

V. PHASE DIAGRAM

The boundaries of the seesaw region discussed above
also of the mixed region, depend on the interaction para
etern and can be found from the following argument. Let
fix r1.1/2 and gradually increaser2 . For very smallr2 ,
it takes the timet'1/r2 to fill an empty site from the res
ervoir, which is longer than the time 1/e for slow processes
to happen in the bulk. In this case the system will go into
symmetric low-density phase which also exists in the low
left corner of ther22r1 phase diagram. Asr2,r1 , it will
tend to minimize its flux according to the minimization prin
ciple @7# and the stationary current will bej (r2 ,r2). But
this principle, extended to the two-channel case, sugg
that the low-density phase will become unstable if there i
region (r1 ,r2) such that the currents in both channels a
smaller thanj (r2 ,r2)

j a~r1 ,r2!, j ~r2 ,r2!; r2,r1 ,r2,r1 . ~22!

A transition will take place as soon as the first such po
appears. For our system, this happens atr1512r25r1 and
therefore the instability is expected when

j ~r2 ,r2!5 j ~r1,12r1!, ~23!

i.e., when the upper and the lower curves in Fig. 2 lead to
same current. Actually, according to the results in Sec.
the low-density phase does not vanish completely but co
ists with unsymmetric configurations beyond that point.

The part of the region~22! along the diagonalr11r2
51 consists of two separated segments@compare Figs.
6-6
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SYMMETRY BREAKING AND PHASE COEXISTENCE IN . . . PHYSICAL REVIEW E64 026126
9~b,c!#. As r2 grows, these segments also grow until th
finally merge at a valuer* such that

j ~r* ,r* !5 j ~1/2,1/2!. ~24!

From that point onwards, the low-density symmetric reg
~the presence of which is signaled by the ‘‘cloudy’’ part
Figs. 9~b,c! disappears completely and the seesaw phase
scribed in the previous section takes over. A further incre
of r2 , however, decreases the range within whichr1 and
r2, according to Eqs.~22!, ~10!, may fluctuate. Atr251/2
the system crosses the boundary into the symmetric p
with r15r25r1 via a second-order transition@see Figs.
10~b,c!#.

These simple arguments are well supported by Mo
Carlo calculations. In Fig. 9, the stationary density distrib
tion w(r1 ,r2) is shown for fixedr1 and four different val-
ues ofr2 . The change of its shape as one crosses the po
defined by Eqs.~23,24! is clearly seen. In Fig. 9~a!, the sys-
tem is in the conventional low-density phase. The distrib
tion has a boomerang shape due to the finite size~inciden-
tally similar to the one found in@8#! with the weight however
concentrated on a symmetric liner15r2 near the origin.

FIG. 9. Stationary distributionw(r1 ,r2) as obtained from nu-
merical simulations for a system of 300 sites withn54, r150.8,
andr250.02,0.055,0.06,0.09~a–d!. The figures show the location
of nonzerow, the dark regions within white ones correspond to t
highest values ofw.
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In Fig. 9~d!, on the other hand, there is only weight alon
the diagonalr11r251, which is characteristic of the see
saw region. Figures 9~b! and 9~c! show the transition region
between Eqs.~23! and ~24! and indicate the mixed phase
The ‘‘cloudy’’ part in Figs. 9~b! and 9~c! is due to the coex-
istence of symmetric and asymmetric states mentioned ab
and the increasing weight along the diagonal comes from
increase of density values satisfying Eq.~22!. The mixed
region, as seen in Figs. 10~a!–10~c!, exists for all valuese
,1. By contrast, the seesaw region only appears whee
becomes smaller thanecrit51/4, the value where the sym
metric currentj (r,r) starts to develop a double-hump stru
ture.

The discussion so far has assumed that the value ofr1 ,
for which one variesr2 , is not too large. Ifr1.r* , where
r* is defined by Eq.~24!, and one increasesr2 , one will
still cross the transition line at the point given by Eq.~23!.
With further increase ofr2 , however, the condition~24!
will not be satisfied, and the system will remain in the mix
region. Upon crossing the liner1512r2 , the coexistence
of symmetric it low-density regions with asymmetric on
changes into a coexistence of symmetrichigh-densityregions
with asymmetric ones. Finally, one ends up in the conv
tional high-density phase.

One should mention that if one analyzes the situat
more closely with second-class particles, one finds that
fraction of symmetric and unsymmetric configuratio
changes as one moves through the mixed-phase region.
leads to the changing ‘‘cloud’’ mentioned above. Howev
we do not discuss this in more detail here.

The completer22r1 -phase diagram is drawn in Figs
10 ~a–c! for three different values of the interaction. Th
sequence shows in particular how the two new regions
velop in the upper-left corner asn is increased. In the non
interacting case, the mixed region shrinks to the upper-
part of the diagonal and becomes the single-chain transi
line. The remaining regions are occupied by symme
phases withr15r2, and the boundaries are determined
the extremal principle for the currentj (r,r), given by Eq.
~4!. This happens because outside the region~12! the evolu-
tion of the system at the boundaries is governed by the
processes. For instance, ifr2.1/2, the injection rate will be
fast. This will produce a considerable number of adjac
pairs of particles in the bulk and consequently the extract
will also be due to the fast processes. For the symme
boundary densities which we consider, a symmetric b
situation is to be expected. But then each chain behaves
e
f

FIG. 10. Phase diagram of th
model for three different values o
the coupling: (a)n51, (b)n52,
(c)n54. Thick ~thin! lines indi-
cate first- ~second-!order transi-
tions. rmax

I and rmax
II denote the

positions of the left and right
maximum of the curvej (r,r) in
Fig. 2.
6-7
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sentially like an independent one with currentj (r)5 j (r,r).
Consequently, the problem falls into the class considere
@7#. In drawing the boundaries, the symmetry of the probl
~see the end of Sec. II! was used. They were also checked
simulations.

VI. CONCLUSION

We have studied the problem of a two-channel syste
coupled to reservoirs of prescribed densities, through wh
a current flows. The aim was to see which phases one
expect in such a system, and what the principles are
govern the transitions between them. The example we t
was a one-parameter model that has a simple stationary
on a ring. We found that already this system shows comp
behavior in certain parts of the parameter space.

The mixed-phase region is probably the simpler pheno
enon. A relatively close analogy in equilibrium statistic
physics can be found in a system of two ferromagne
planes that are coupled together antiferromagnetically.
coexistence lineH50, T,Tc of the single layers in a uni
form field H then widens into a whole region in theT2H
plane, and if one creates domain walls by identical bound
conditions on both layers, these tend to separate in sp
creating bubble regions of opposite magnetizations, whi
nonzero field favors regions of equal magnetizations. Th
one finds features as in Figs. 4 and 5.

The seesaw region with its ‘‘weak’’ symmetry breaking
more interesting, and we studied it in more detail. One mi
view the phenomenon as a kind of phase-separationbetween
the channels, as opposed to the onealong the channels in the
mixed-phase region. There are also certain similarities
critical phases. On the one hand, the probability distribut
w(r) resembles that for the order parameter of a finite Is
system at the critical temperature@14#. One the other hand
its properties do not depend~except for the left and righ
limits! on the boundary valuesr6 , a feature that it share
with the critical ~maximal-current! phase found in the
present model.

One should note that our model differs from the lattic
gas models studied in@15,1#, since the particles cannot ho
between the chains. It would be interesting to see whe
relaxing these conservation laws changes the situa
strongly. Leaving this aspect aside, however, it seems
the results are rather general. We did use the microsc
details for arguing in the paper, but the final results do
depend on them directly. It is only the flux, which determin
the phase transition lines and characterizes the new ph
Thus, one can hope that pursuing this approach would a
to formulate generic principles that govern the phase tra
tions in such multichannel systems.
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APPENDIX A: BOUNDARY RATES

In our model, we view the reservoirs as extensions of
system having the same properties as the ring@12#. This
permits a natural definition of the boundary rates. Consid
for example, the first process in Fig. 1. On the ring, it lea
to the average current

^ j l&5a^nl~12ml !&^nl 11~12ml 11!& ~A1!

between sitesl and l 11. Here, the product form of the sta
tionary state has been used. If sitel belongs to the left res-
ervoir, one combinesa with the first factor, evaluated for the
prescribed boundary densitiesr15r25r2 . This gives the
rate

a25a^n~12m!&r2 . ~A2!

Analogously, if site (l 11) belongs to the right reservoir, on
combinesa with the second factor and defines

a15a^~12n!~12m!&r1 . ~A3!

In this way, one obtains boundary rates that are determi
by the bulk ones, multiplied by the weight of the bounda
configuration involved in the process. Witha5b5g51,
one has

a25r22p2 ; b25g25p2 ; e25e~r22p2!;
~A4!

a15g15p11122r1 ; b15r12p1 ;

e15e~r12p1!, ~A5!

wherep65p(r6)5^nm&r6 andp(r) is given by

p~r!5r1@A~2r21!224er~12r!21#/2~12e!.
~A6!

For e!1, configurations with two particles~holes! at one
site have a small weight ifr,1/2 (r.1/2). Thus, forr2

,1/2 and r1.1/2, the ratesb2 ,g2 ,a1 ,g1 are propor-
tional to e, as are the ratese6 . In this case, only one fas
boundary process remains at each end.

With these quantities, one can then write down the to
rates for the boundary processes. For example, if the
sites of both chains are empty, the rate with which a part
enters one chain is given by (a21g2). As a consequence
the currents at the left and the right end of the first chain a
respectively,

j 2
1 5~a21g2!~12n1!~12m1!1~b21e2!~12n1!m1 ;

~A7!

j 1
1 5~b11g1!nNmN1~a11e1!nN~12mN!. ~A8!

If r25r1 , the stationary state of the system is automa
cally the same as for the ring, i.e., the density is const
everywhere. This is the basic motivation for the approa
described here. Fore51 everything reduces to the single
chain problem@2,3#.
6-8
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APPENDIX B: MEAN-FIELD EQUATIONS

In the mean-field approximation, one neglects the co
lations between different sites. In our case, the system o
ring has no correlations in the stationary state^nlnk&5^nl&
3^nk&. Two adjacent sites on different chains, however,
correlated. Therefore one should take the productpl5nlml
as an independent variable. Keeping this in mind, the me
field equations resulting from the gain and the loss proce
become~for a5b5g51 and leaving out the averagin
brackets for simplicity!

]nk

]t
5 j k

12 j k11
1 5@nk21~12nk!1~e21!~nk212pk21!

3~mk2pk!#2@nk~12nk11!1~e21!~nk2pk!

3~mk112pk11!#, ~B1!
, in

a

. A
v.

n-

02612
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es

]pk

]t
5~nk2pk!~emk211~12e!pk21!1~mk2pk!

3~enk211~12e!pk21!2pk~22nk112mk11!.

~B2!

The equation for themk is obtained by substitutingm↔n in
Eq. ~B1!.

The homogeneous solution of these equationsmk[m,
nk[n, pk[p leads to a quadratic equation forp. When sub-
stituted into the expression for the current in Eq.~B1!, this
reproduces the value~4! because the mean-field equatio
are exact in this case.

For the open system, Eqs.~B1! and ~B2! should be
supplemented by the boundary conditionsn05m05r2 ,
nN115mN115r1 . For pk one takes the homogeneous s
lution at both ends.
nd
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