PHYSICAL REVIEW E, VOLUME 64, 026126
Symmetry breaking and phase coexistence in a driven diffusive two-channel system
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We consider classical hard-core particles moving on two parallel chains in the same direction. An interaction
between the channels is included via the hopping rates. For a ring, the stationary state has a product form. For
the case of coupling to two reservoirs, it is investigated analytically and numerically. In addition to the known
one-channel phases, two new regions are found, in particular one, where the total density is fixed, but the filling
of the individual chains changes back and forth, with a preference for strongly different densities. The corre-
sponding probability distribution is determined and shown to have a universal form. The phase diagram and
general aspects of the problem are discussed.
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[. INTRODUCTION and only a probability distributionv(p4,p,) can be given.
Together with that, symmetry-breaking phenomena appear.

Driven many-particle systems have been the topic of nu- In one region, one finds spatial coexistence between sec-
merous studies in recent yeddd. The simplest example is a tions of equal and of unequébut fixed densities in the two
one-dimensional lattice gas where hard-core particles movehains, with the size of these sections varying in time. This is
stochastically in one direction. This model, also known assimilar to the situation on the transition line for one chain,
the asymmetric exclusion process, can be treated exactly, anghere sections of high and low density, separated by a do-
therefore, has become a reference system in this[field].  main wall, coexist. It is related to the fact that the current,
The characteristic feature of such driven systems is a nonyhich must be constant throughout the systé@nd thus
zero current in the stationary state. For the case of OPePlays the e of a chemical potentigl can be the same for

boundaries, this current transports the “information” from gitferent densities. This will be called thmixed-phase re-
the boundaries into the bulk, and nonequilibrium phase trangiOn in the following.

sitions can aris¢5,6]. These do not have analog in equilib-
rium systems where the boundaries normally do not play @ ¢ jtical value and then grows at the expense of the first one,

significant r¢e. It was shown |r[7_] that the phase transitions only the unsymmetric configurations exist. The total system
for a generic-driven system with one type of particles are

. - is then practically half filledp;+ p,=1, but the individual
governed entirely by an extremal principle for the MacTO- Jensities change in time. The same holds for the current. The
scopic currenf(p), wherep denotes the average density of gein " o
the particles. This principle states that the stationary buII{mSF probable configurations are those where one channel is
current assumes its absolute minimum within the interval sef€/atively empty and the other refatively full. Between them,
by the boundary densities, jf_(left) <p. (right) and the the system dlffuses'bgck and forth, and he'nce,.we WI|| use
flux is towards the right. Ifp_>p, it takes its absolute the termseesa_lw regiofin the foIIc_meg. The time in which
maximum. In either case, the current and the density fluctuth® channels interchange roles increases only as a power of
ate only slightly around their stationary values and the flucihe system size, in contrast to the result for a model with two
tuations vanish as the system size goes to infinity. kinds of particles on one chaj®,8] or simplified versions of

In the present paper, we study a system with two paralleit [9,10]. The situation can be compared to that at an equi-
channels and show that these two properties do not hold ilibrium first-order transition with a vanishing or size-
general. Our example is a simple extension of the oneindependent free-energy barrier between the phases. In this
channel model and contains one additional parameter thaense, the symmetry breaking could be called “weak.” The
measures the coupling between the channels. There is rmwigin of this behavior is related to the existence of fast and
exchange of particles, but the hopping rates in one chaiglow processes in the system, as will be discussed in detail.
depend on the local configuration in the other one. They are The paper is organized as follows. In Sec. I, we define
chosen in such a way that, for a ring, the stationary state hatie model and describe the solution on a ring. In Sec. Ill, we
a simple product form, and thus, the current can be obtainetteat it with boundary reservoirs and present numerical re-
explicitly. With reservoirs at the ends, the system was studiedults from Monte Carlo and mean-field calculations. The
by a combination of numerical and analytical methods. In acase of strong interactions, where one can simplify the prob-
p_-p. phase diagram, it shows a number of regions withlem and obtain analytical results for the seesaw region, is the
equal densities in both chains and various values for the cutepic of Sec. IV. After that, we turn, in Sec. V, to general
rent. In addition, however, there are two other regions withinteractions and establish the complete—p, phase dia-
unexpected new features. They develop out of the first-ordegram. Section VI contains the conclusion and some discus-
transition line of the single-chain problem as the interactiorsion of open problems. Some details concerning the bound-
between the channels is turned on. In both of them, the oveary rates and the mean-field equations can be found in
all densitiesp; and p, in the two chains fluctuate strongly Appendixes A and B.

In the other region, which appears if the coupling exceeds
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which means that different sitésare uncorrelated. This can
FIG. 1. The four elementary hopping processes, shown here fdse proved by a straightforward consideration of the gain and
the first chain, and their rates. In the study, the first three rates angss processes. For the ring geometry, the stationary densities
set equal to one. are constant and the quantities of main interest are the cur-
rentsjq,j» in the two chains. These can be calculated either
Il. MODEL by working in a grand canonical ensemble or via the mean-
field equations of Appendix B, which are exact here due to

Our model consists of two parallel chains, on each ofie form of Eq.(2). For example, the mean-field expression
which particles can hop towards the right if the next site is¢,, i, is, from Eq.(B1), with p,=n,m,

empty. The hopping rate in one chain depends on the con-

figuration of the neighboring sites in the other and one has  j,=n(1—n,.;)+(e—1)(Nk— P (Mes1— Prs1), ()

the four processes shown in Fig. 1. The stationary state has a

simple form(given below if the rates satisfy the condition where all quantities are expectation values. In the stationary

a+B=2v. In the following, we choosex=p8=vy=1, so state, they are independent kf n,=p,,m=p, and one

that the remaining rate only has to determin@. The expression for the current for
arbitrary densitie,p, is complicated and is omitted here.
In particular caseg,=p, or p;=1—p,, the currents in the

e=exp(—v) (1) two chains are the same and given by

j=p(1=p)[1={1-V1+F(xv,p)}?IF(£v,p)]; (4

is the only parameter. It refers to those processes where the

site besides the jumping particle is empty, but the next one in F(v,p)=4(e "—1)p(1—p), (5)
the forward direction is occupied. We will always assuene

<1. This can be viewed as the result of short-range interacwhere the uppeflower) sign holds forp;=p,=p and p,

tions that increase the barrier similar agid]. In a traffic- =1—p,=p, respectively. The resulting curves are shown in
model contexte would describe a hesitation to move besidesFig. 2 for various values of the interaction paramete©ne
another car. can see that for larger a minimum atp=1/2 exists in the

The state of the system can be described either by occuwase of equal densities. The value where this first happens is
pation numbers),,my, or by spin variablesr,, 7, for the  v.,;;=In4~1.39. The reason is that for half filling and large
two chains. The first take the value@], the latter the values v, adjacent sites are mainly occupied by particle-hole pairs
+1(—1) if site k is occupiedempty). For a ring withN sites,  and then only hopping with the small ratds possible. Such

the stationary probability P(o,7) a double-peak structure of the current leads to a much richer
=P(o1,05,...,0n,T1,72, .. .,7n) then has the Boltz- phase diagram in the one-chain problem with resenjaits
mann form and will be important here, too.
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FIG. 2. Currenj vs densityp for a ring according t@3,4) for four values of the interaction,=1.2,2,4,8(a)—(d). Upper and lower curves
correspond tp=p,;=p, andp=p;=1—p,, respectively.
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FIG. 3. Time evolution of the average densities in the two chains for three typical cases, as obtained from simulations for a system with
v=2 andN=1000 sites. Boundary densitigs ,p, : (a) 0.15, 0.5;(b) 0.15, 0.8;(c) 0.42, 0.6.

With reservoirs, particles enter the system at sitel  one has to look at the state of the system in more detail. It
and leave from sitdN. If one adds reservoir siteas=0 and then turns out that the seemingly chaotic pattern is connected
n=N+1 to the chains, the bulk processes of Fig. 1 appeawith the spatial coexistence of several phases.
also at the boundaries. The rates can then be chosen in suchThis can already be seen in a mean-figiF) analysis of
a way that the dynamics is the same as in the interior, but ahe system. The corresponding equations are given in Appen-
prescribed densitiep and p, [12,7]. These are thus the dix B. We integrated them over time, starting from random
only boundary parameters that enter. The procedure is dgnitial conditions and stopping when the current had con-
scribed in more detail in Appendix A. In the following we yerged to 10° in relative units. In the region of smagl_

will normally choose equal boundary densities for bothg.q largep ., , the mean-field density profiles then had the
chains, which makes the problem completely symmetric befxpical shapes seen in Fig. 4.

of vacancies towards the lo, < also Symmetrc under .61 US 'L dScUss Fig, which cortesponds ta.
' y <1-p, . Here, one has two regions where the local densi-

exchange - —1=p. .pa=1=pa- ties are constant. On the left they are the same in both chains,
(n),{my=p_, while on the right they are different. This
lll. NUMERICS leads to the bubblelike structure in the figure. That such a

We have performed Monte CariMC) simulations of our coexistence is possible, follows already from Fig. 2, since a
system for different values gf_,p., , andv, looking firstat ~ given value of the currentfor the ring can be realized in
global quantities, namely the overall densitipg(t) and different ways. Corresponfilngly, the qensmes |nAthe pubble
p»(t) in the two chains. The motivation for this was that, for region are given byn,)=p,(m)=1-p wherej(p,1-p)

a single chain, the average density of particles is an order j(p_,p_). The left end of the bubble can be anywhere, its
parameter characterizing the different phases. This mearscation depends on the initial conditions. Similarly, the two
that p(t) fluctuates only slightly around its mean value andchannels can exchange roles. However, the bubble is always
the fluctuations vanish as the system size grows. “glued” to the right boundary. Fop_>1—p,, one has a

Typical results of such MC calculations are presented irsimilar picture but the region with equal densities now ap-
Fig. 3 for v=2 and three different values of the boundary pears on the right and the values ang),(m,)=p. . Thisis
densities. While in Fig. @) the behavior is as for a single a consequence of the particle-hole symmetry of the model.
chain, the other two figures show a “random walk”@f and  The bubble in this case is attached to the left boundary, while
p, within a large range of densities. These large fluctuationghe location of its right end depends on the initial conditions.
are intrinsic, they do not change qualitatively with the sys-Finally, on the linep_=1—p,, see Fig. 4), the bubble
tem size. In Fig. &) the situation is still relatively simple coexists withtwo regions, one to the left and one to the right,
since the sum of the densities stays approximately constanihere the density in both chains is the same. On the left its
In Fig. 3(b), however, the behavior is rather irregular and thevalue isp_, on the right it isp., . These regions can coexist,
global densities do not give a sufficient description. Ratherpecausg(p,p)=j(1—p,1—p). In this case, the locations of
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FIG. 4. Density profiles in the mean-field approximation for a system witt2 andN= 200 sites. Boundary densitigs ,p, : (a) 0.15,
0.82;(b) 0.15, 0.85. The horizontal lines indicate the densitigs— p predicted by equating the curren(®,1—p)=j(p_ ,p_), see Sec. lll.

both ends of the bubble depend on the initial conditions. istence of different regions along the chains. However, the
In order to verify the correctness of this MF picture, we densities individually fluctuate strongly in an interval

performed specific Monte Carlo simulations. In the spirit of

[18,16], we introduced two phantom particldsand B de- Pmin=P12=Pmax (10

signed to track down the left and right end of a bubble,

respectively. Denoting the position of particke by a, the  where roughlypin=maxp_,1-p+), Pmax=1—Pmin- A

rules are small asymmetn in the boundary densitiga field in mag-
netic languagesuppresses these fluctuations. If one chooses

a—a+1l, if ng,1=0, my,;1=0, (6)

_1=p_—h, p_o,=p_, =py, =p;+h,
a—a—1, if (1-n,_)(1-m, 1) =0. @ p-1=pP pP-2=pP P+1=P+ P+2=P+ (11

This means thaA moves preferentially to the right in a
low-density region and preferentially to the left in a high-
density region, including the bubble region. In contrast to th — pmins P2=Pmay OF Vice versa, depending on the sign of

second-.class particles in ReL6], Adpes not use th‘? sites O.f h. Moreover, if one computes formally a “free-energy den-
the chains and should rather be viewed as moving besid y" £(M)=— In[w(M)JN at small field, wherev(M) is the

the?\.I Its 2yn?m|cs ?Oiﬁ ngt mter_fere fW'ththat ct); the ChalrEtationary probability to hav# particles in one channel, it
particies. Analogously, the dynamics of particdevith coor-— p5¢ exactly the same form as found for a single chain in the

dinateb is vicinity of the line of first-order transitions, see Fig. 18 in
®) [8]. Therefore, the whole region where this occiesd

which we will determine in more detail belgwcan be
viewed as one of first-order transitions.

which makes the chains inequivalent without destroying the
eparticle—hole symmetry, the system locks in aft;

b—>b_1, if nb,]_:l, mb,l=l,

b—>b+ 1, if nb,lmb,1=0, (9)

and it therefore tracks the right end of a bubble. 0.9

One then runs the MC simulations, adds partidlemndB . .
at some point and monitors their positions. Fer <1 / TN
—p. , it turns out thatA performs a random walk, whilB /
basically sticks to the right boundatdy~N. It is then inter-
esting to look at those configurations, whérés at a certain 0.5y : /|
specified site. Thereby one singles out the states with a par-"\, i
ticular size of the bubble regid(if there is on¢. The average g \ /
density profile in this case is shown in Fig. 5 fer =0.15, sor et
p+=0.77. Quite remarkably, it has the same shape as found o~
in the mean-field calculationgl?7]. This confirms that, in- 0.1¢© , , ,
deed, there is a very unusual dynamical coexistence of vari- 0 100 200 300 400
ous states. The MC calculations also confirm that the size of
the bubble region can vary and that the two chains can inter-
change roles. While this is related to the initial conditions in  F|G. 5. Average density profiles as seen from a second-class

<my >

k

the MF treatment, it happens dynamically here. particle positioned at site 170, provided the density in the first chain
For the case of Fig. (8) the situation is different. As is higher, for a system witv=2, p_=0.15, p, =0.77, andN
mentioned, the system is always half filled, i.@;(t) =400 sites. The average is taken over 6*Monte Carlo steps

+ p,(t)=1 during the evolution. For given overall densities after 3*10 steps of equilibration. The horizontal lines indicate the
p1.p2, one finds an average profile with one bubble that fillsdensities p,1—p predicted by equating the curreni$p,1—p)
essentially the whole system. Thus, there is no spatial coex=j(p_,p_), see Sec. lll.
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O—0OC—e 0090 O—e O 00 its time nearM =0 andM =N. This can be made more pre-
cise by writing down the master equation for the probability
e—eo—O—90o—0—o O OO wy to find the valueM
FIG. 6. Two examples of metastable states, see text. AWy
ot amM+1Wmea ay-1Wy-1—2ayWy . (15

IV. STRONG-INTERACTION LIMIT

The behavior described at the end of the previous sectioln a continuum limit, this becomes
is found in the whole domain of reservoir densities

aw(p) &
p-<112; p,>1/2 (12 =$[D(p)W(p)], (16)

ot

if the interaction between the channels is strong, i.ey if . - )
>1 (e<1). In this limit, the problem can be discussed ana-Where D(p)=ay /N? is the diffusion constant. This equa-
lytically, as we now show. tion can be related to the associated Legendre differential
The basic observation is that in this cakeee of the  €quation. However, for the stationary state it is sufficient to
boundary processes are sléwith rate of ordere) and only ~ Note that the probability current is given by
one (where on the left both sites are empty or on the right P
both sites are fullis fast(rate of order L This comes from __
the construction of the boundary rates mentioned above and H(p)= ap[D(p)W(p)]. (17
is discussed in more detail in Appendix A. As a consequence,
there exist particular configurations, which can be left onlySince this has to be zero, the stationary distribution follows
with rate e, and that we will call metastable. These are suchas
that the system is half filled, witM particles in the first and
N—M in the second channel, arranged in such a way that
adjacent sites are always in a particle-hole state. Two ex-
amples are shown in Fig. 6. Transitions between such states
have the character of avalanches. After a slow process, eith@his simple universal function, which is independent of the
at the boundary or in the interior, a sequenceNdfst pro-  parameters of the system, is also seen in simulations as illus-
cesses follows after which a new metastable configuration itrated in Fig. 7a). Actually, the picture shows some devia-
reached. If the start is in the bulk, four different final con- tions at the boundaries of the interval, but there the neglected
figurations withM’'=M, M =1 can be reached according to processes should be included. This would lead to finite rates
also atp=0,1 and preventv(p) from diverging there. In
M with probability ~ 1/2 order to normalize it as it stands, one has to leave out a small
M—{ M+1 with probability 1/4 (13  boundary region of widths/N. o .
. . Although the system is mainly in configurations with the
M—1 with probability —1/4 density in one chain small and in the other large, it is not
}ocked into them. The average time in which the two chains
interchange roles can be calculated from the first passage
Yime formula given in13]. In the continuum case it reads

A
W(p):m, 0<p<l1. (19

A process in the bulk starts at a wall, where the orientation o
the particle-hole pairs changes. For example, the first co
figuration in Fig. 6 has two such walls. For a givibh the
average number of walls can be shown to bevi(1
—M/N). Therefore, the average rate for bulk processes from T=
level M is given by

=NIn(N/8)/e.
(19

Jl—ﬁ/N w2 dp’
snD(p")w(p")

ay~M(1—M/N)ée/4. (14
Thus, T is smaller than for a homogeneous diffusion process

Similar considerations apply to the processes starting at thehere it varies adl?. This is due to the large hopping rates
boundaries. Here, two final configuratioMs’=M and M’ proportional toN for intermediate values of. The law is
=M+1 orM'=M—1 can be reached with equal probabil- also found numerically, as seen from Figbj7 However, this
ity. However, the rate does not invohMd, and thus, these result and the considerations so far do not apply to arbitrarily
processes are unimportant compared to the bulk processksge system sizes.
except for very smalM or N— M. In the following, we will If N becomes too large, the typical timeN¥ after which
neglect them. a new slow process starts, becomes smaller than the#ime

The dynamics of the metastable states is thus equivalenrt N needed to complete the first one. Therefore, the previous
to a random walk in the space of occupation numbers Qonsiderations are limited to sizes such thfte<1. For
<M=N with a position-dependent rate given by Ea4). larger systems, it is not possible to separate the fast and the
This rate, which in terms of the density=p=M/N is pro-  slow processes. Nevertheless, the system is still basically
portional top(1—p), is small at the ends of the interval and half filled and each time a particle comes in and another
large in the middle. Therefore, the system will spend most oparticle exits, the numbevl changes according to EL3).
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FIG. 7. (a) Stationary probability distributiom(p) for small systems in the seesaw region. Analytical re€if} (continuous curvein
comparison with data from Monte Carlo simulations of systems witt8, p_=0.1,p, =0.9, andN=20,30,50 sitegcrosses, stars, and
boxes. The systems have evolved for at least Mbnte Carlo steps, the averages are taken over 40 hist@s)éEhe corresponding average
passage times.

Since these processes also determine the flux through theith the analytical prediction. Again, there are deviations in
system, their effective rate can be related(ip,1—p). Thus, the boundary regions near=0 andp=1 due to Eq(10) but

instead of Eq(14), one has apart from that the agreement is very good. The cuh&,
. plotted for comparison, clearly does not fit the data. Note
an=j(p,1=p)/2, (20 that the ratg20) does not contain the size any more. There-

fore, the passage time is now proportional td\?. In con-
trast to the diffusion model treated |0,10] there is no ex-
ponential increase with the size.

where forj one can use the ring resi#t). This should give
the behavior in the thermodynamic limit. Following the same
steps as before, one then obtains the distribution

V. PHASE DIAGRAM

———; p withinthe limitg10) (21
j(p,1=p) The boundaries of the seesaw region discussed above, but
also of the mixed region, depend on the interaction param-
eterv and can be found from the following argument. Let us
fix p, >1/2 and gradually increage_ . For very smallp_,
it takes the time~1/p_ to fill an empty site from the res-
rvoir, which is longer than the time elfor slow processes

0 happen in the bulk. In this case the system will go into the
egymmetric low-density phase which also exists in the lower
left corner of thep_ —p, phase diagram. As_<p ., it will

tend to minimize its flux according to the minimization prin-
ciple [7] and the stationary current will bgp_ ,p_). But

this principle, extended to the two-channel case, suggests
that the low-density phase will become unstable if there is a
region (p1,p,) such that the currents in both channels are
smaller thanj(p_ ,p_)

w(p)=

for the densityp. This is again independent of the boundary
valuesp. , and the interaction enters only via the formula
for the current. The function is qualitatively similar to Eq.
(18) but, according to the form gf(cf. Fig. 2, has a flatter

shape. This behavior is clearly seen in simulations. Figure
shows numerical results for a system of 300 sites togeth

=

Jalp1,p2)<i(p-.p-); p-<p1,p2<p:+. (22

A transition will take place as soon as the first such point
appears. For our system, this happeng,at1—p,=p., and
therefore the instability is expected when

ilp—p)=ilps,1=p,), (23
FIG. 8. Stationary probability distributiow(p) for a large sys-  I-€- When the upper and the lower curves in Fig. 2 lead to the

tem in the seesaw phase. Analytical re<alt) together with simu- ~ Same current. Actually, according to the results in Sec. I,
lation data for a system &= 300 sites from 1.5 10’ Monte Carlo  the low-density phase does not vanish completely but coex-

w(p)
OO O O
QS N s Yy 0 Ny 0N

0 0.10.20.30.40.50.60.70.80.9 1
P

steps, averaging over 40 histories. The parametersvaré, p_ ists with unsymmetric qonﬁgurations beyond that point.
=0.2 andp,=0.8. The result(18) is also shown for comparison The part of the region(22) along the diagonap;+p,
(dotted. =1 consists of two separated segmefitempare Figs.

026126-6



SYMMETRY BREAKING AND PHASE COEXISTENCE IN . .. PHYSICAL REVIEW B4 026126

In Fig. 9d), on the other hand, there is only weight along
the diagonalp,+ p,=1, which is characteristic of the see-
saw region. Figures(B) and 9c) show the transition region
between Eqs(23) and (24) and indicate the mixed phase.
The “cloudy” part in Figs. 9b) and 9c) is due to the coex-
istence of symmetric and asymmetric states mentioned above
and the increasing weight along the diagonal comes from an
increase of density values satisfying E82). The mixed
region, as seen in Figs. @-10(c), exists for all values
<1. By contrast, the seesaw region only appears when
becomes smaller thae,;;=1/4, the value where the sym-
metric current (p,p) starts to develop a double-hump struc-
ture.

The discussion so far has assumed that the valye, of
for which one variep _ , is not too large. Ifp . >p*, where
p* is defined by Eq(24), and one increasgs_, one will
still cross the transition line at the point given by EZ3).
With further increase ofp_, however, the conditior{24)

FIG. 9. Stationary distributiow(py,p,) as obtained from nu- |l not be satisfied, and the system will remain in the mixed
merical simulations for a system of 300 sites witk 4, p, =0.8, region. Upon crossing the line, =1—p_, the coexistence
andp=0.02,0.055,0.06,0.06a~d. The figures show the location of symmetric it low-density regions with asymmetric ones
of nonzerow, the dark regions within white ones correspond to thechanges into a coexistence of symmeiiigh-densityegions
highest values of. with asymmetric ones. Finally, one ends up in the conven-

, tional high-density phase.
9(b,9)]. As p_ grows, these segments also grow until they ~ one should mention that if one analyzes the situation

finally merge at a valug* such that more closely with second-class particles, one finds that the
_ _ fraction of symmetric and unsymmetric configurations
j(p*,p*)=](1/12,112. (24 changes as one moves through the mixed-phase region. This

leads to the changing “cloud” mentioned above. However,

From that point onwards, the low-density symmetric regionwe do not discuss this in more detail here.
(the presence of which is signaled by the “cloudy” part in  The completep_ —p, -phase diagram is drawn in Figs.
Figs. 9b,0) disappears completely and the seesaw phase dd0 (a—g for three different values of the interaction. The
scribed in the previous section takes over. A further increassequence shows in particular how the two new regions de-
of p_, however, decreases the range within whighand  velop in the upper-left corner asis increased. In the non-
p,, according to Eqs(22), (10), may fluctuate. Ap_=1/2  interacting case, the mixed region shrinks to the upper-left
the system crosses the boundary into the symmetric phagart of the diagonal and becomes the single-chain transition
with p;=p,=p, via a second-order transitiofsee Figs. line. The remaining regions are occupied by symmetric
10(b,0)]. phases withp,=p,, and the boundaries are determined by

These simple arguments are well supported by Montehe extremal principle for the curref{p,p), given by Eq.
Carlo calculations. In Fig. 9, the stationary density distribu-(4). This happens because outside the regi®) the evolu-
tion w(p4,p») is shown for fixedp , and four different val- tion of the system at the boundaries is governed by the fast
ues ofp_ . The change of its shape as one crosses the pointgrocesses. For instance pif >1/2, the injection rate will be
defined by Eqs(23,24 is clearly seen. In Fig.(@), the sys- fast. This will produce a considerable number of adjacent
tem is in the conventional low-density phase. The distribu-pairs of particles in the bulk and consequently the extraction
tion has a boomerang shape due to the finite §izeden-  will also be due to the fast processes. For the symmetric
tally similar to the one found if8]) with the weight however boundary densities which we consider, a symmetric bulk

concentrated on a symmetric lipg= p, near the origin. situation is to be expected. But then each chain behaves es-
1 a 1
High density p=p, Mixed ph. PP, PP, FIG. 10. Phase diagram of the
Seesaw
P+ s o P+ N i P+ —_—— 0. model for three different values of
Wixed phase Seceam ool 12 PPy | Pp- | 4, E the coupling: &)v=1, (b)r=2,
0.5 0.5 phase 0" 0.5 R . . . . .
. iy Gy (c)v=4. Thick (thin) lines indi-
Low density . p=p. § o X - H
iy Maxinal PP, g cate first- (secondjorder transi-
phase P=pP- MER. CUEE Max. P=P- |Max.curr.I | Max. tions. p:nax and pInLax denote the
1 CULEy curr. e .
PPmax | ST P-Plmax | Tort positions of the left and right
0 0.5 1 0 P Prax P man 1 0p" Paax 0.5 pPlame 1 maximum of the curvg (p,p) in
p- [ p- Fig. 2.
(a) (b) (©)
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sentially like an independent one with currg(p)=j(p,p). APPENDIX A: BOUNDARY RATES
Consequently, the problem falls into the class considered in . . .

: . In our model, we view the reservoirs as extensions of the
[7]. In drawing the boundaries, the symmetry of the problem

system having the same properties as the fihg. This
g?riilt:tieo?]:d of Sec.)was used. They were also checked bypermits a natural definition of the boundary rates. Consider,

for example, the first process in Fig. 1. On the ring, it leads
to the average current

VI. CONCLUSION ()= a(n(1—m))n1(1-m;)) (A1)

We have studied the problem of a two-channel system

coupled to reservoirs of prescribed densities, through Whidteetween site$ and|+1. Here, the product form of the sta-

a current flows. The aim was to see which phases one Cé[honary state has been used. If sitbelongs to the left res-

expect in such a system, and what the principles are thae[rvoir,.one combineg with t.h'e first factor, eva!uatgd for the
govern the transitions between them. The example we tooR"€S¢roed boundary densitigg=p,=p_. This gives the
was a one-parameter model that has a simple stationary ste{%te

on a ring. We found that already this system shows complex a_=a(n(l—m))p_ . (A2)
behavior in certain parts of the parameter space.

The mixed-phase region is probably the simpler phenomanalogously, if site (+1) belongs to the right reservoir, one

enon. A relatively close analogy in equilibrium statistical combinesa with the second factor and defines
physics can be found in a system of two ferromagnetic

planes that are coupled together antiferromagnetically. The a,=a((1-n)(1-m))p, . (A3)
coexistence lindH=0, T<T, of the single layers in a uni-

form field H then widens into a whole region in tfie—H In this way, one obtains boundary rates that are determined
plane, and if one creates domain walls by identical boundary the bulk ones, multiplied by the weight of the boundary
conditions on both layers, these tend to separate in spacéonfiguration involved in the process. With=g=y=1,
creating bubble regions of opposite magnetizations, while #ne has

nonzero field favors regions of equal magnetizations. Thus, ) ) )
one finds features as in Figs. 4 and 5. a-=p-—p-; B-=y-=p-; e-=elp_—p-);

The seesaw region with its “weak” symmetry breaking is (A4)
more interesting, and we studied it in more detail. One might ai=y,=p.+1-2p,; Bi=p,—p.:
view the phenomenon as a kind of phase-separdtitween A Prv PemPem B
the channels, as opposed to the al@gthe channels in the e.=elp,—ps) (A5)
mixed-phase region. There are also certain similarities to TP TR
critical phases. On the one hand, the probability distributionyherep. =p(p.)=(nm)p. andp(p) is given by
w(p) resembles that for the order parameter of a finite Ising
system at the critical temperatuf®4]. One the other hand, p(p)=p+[V(2p—1)°—4ep(1—p)—1]/2(1—€).
its properties do not depen@xcept for the left and right (AB6)
limits) on the boundary values.., a feature that it shares
with the critical (maximal-current phase found in the For e<1, configurations with two particle¢holes at one
present model. site have a small weight ib<<1/2 (p>1/2). Thus, forp_

One should note that our model differs from the lattice-<1/2 andp,>1/2, the rates_,y_,a,,y, are propor-
gas models studied ifi5,1], since the particles cannot hop tional to €, as are the rates.. . In this case, only one fast
between the chains. It would be interesting to see whethdpoundary process remains at each end.
relaxing these conservation laws changes the situation With these quantities, one can then write down the total
strongly. Leaving this aspect aside, however, it seems thdgtes for the boundary processes. For example, if the first
the results are rather general. We did use the microscopigites of both chains are empty, the rate with which a particle
details for arguing in the paper, but the final results do noenters one chain is given byr( +y_). As a consequence,
depend on them directly. It is only the flux, which determinesthe currents at the left and the right end of the first chain are,
the phase transition lines and characterizes the new phaségspectively,

Thus, one can hope that pursuing this approach would allow
to formulate generic principles that govern the phase transi- |- =(a@-+y-)(1—n)(1-—my)+(B_+e_)(1—nymy;
tions in such multichannel systems. (A7)

j1+: (B++y)nymy+ (e, +e)ny(1-—my). (A8)
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APPENDIX B: MEAN-FIELD EQUATIONS Pk

— =(Ng— mg_+(1— —p)+(mg—
In the mean-field approximation, one neglects the corre- dt (NP (€M1 (1= €)Pi-2) + (M= P

lations between different sites. In our case, the system on a X (€M1 (1—€) )= P2 = M1 = Mis 1)
ring has no correlations in the stationary stéten,)=(n,) k=1 Pk=1)7 Pk kel kel
X(ny). Two adjacent sites on different chains, however, are (B2)

correla}ted. Therefore one should _take Fhe_ pro_(metmm, The equation for then, is obtained by substitutingn«~n in
as an independent variable. Keeping this in mind, the mear: B1)

field equations resulting from the gain and the loss processes :I'he homogeneous solution of these equatioms=m
become (for @=p=y=1 and leaving out the averaging ., —n ', =p leads to a quadratic equation farWhen sub-

brackets for simplicity stituted into the expression for the current in ER1), this
Ny reproduces the valugl) because the mean-field equations
— =l l=neal-ng+(e- (g —peq)  are exactin this case.
For the open system, Eq$Bl) and (B2) should be

X (M= P 1= [M(1= Ny 1)+ (€= 1) (Ne—py) suppIE:menteii by the boundary conditiong=my=p_,
Nny1=Mys1=p - FOr p, one takes the homogeneous so-
X (M 1= Pre) s (B1) lution at both ends.
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